
Semantic segmentation of UAV aerial videos using
convolutional neural networks

Girisha S
Department of Information and Communication Technology

Manipal Institute of Technology

Manipal Academy of Higher Education

Manipal, India

girisha3893@gmail.com

Manohara Pai M M
Department of Information and Communication Technology

Manipal Institute of Technology

Manipal Academy of Higher Education

Manipal, India

mmm.pai@manipal.edu

Ujjwal Verma
Department of Electronics and Communication Engineering

Manipal Institute of Technology

Manipal Academy of Higher Education

Manipal, India

ujjwal.verma@manipal.edu

Radhika M Pai
Department of Information and Communication Technology

Manipal Institute of Technology

Manipal Academy of Higher Education

Manipal, India

radhika.pai@manipal.edu

Abstract—Semantic segmentation of complex aerial videos en-
ables a better understanding of scene and context. This enhances
the performance of automated video processing techniques like
anomaly detection, object detection, event detection and other
applications. But, there is a limited study of semantic segmen-
tation in aerial videos due to non-availability of the relevant
dataset. To address this, an aerial video dataset is captured
using DJI Phantom 3 professional drone and is annotated
manually. In addition, the proposed research work investigates
the performance of semantic segmentation algorithms for aerial
videos implemented using Fully Convolution Networks (FCN) and
U-net architectures. In this study, two classes (greenery, road)
are considered for semantic segmentation. It is observed that
both architectures perform competitively on the aerial videos of
Unmanned Aerial Vehicle (UAV) with a pixel accuracy of 89.7%
and 87.31% respectively.

Index Terms—Semantic segmentation, aerial videos, convolu-
tional neural network, U-net, FCN

I. INTRODUCTION

Analyzing videos captured through UAV have wide applica-

tions like tracking vehicles, object detection, anomaly detec-

tion etc. For a majority of these applications, there is a need

to infer spatial and contextual information from these images.

For example, tracking of vehicles will be easier in the presence

of knowledge about the roads. Semantic segmentation is one

of the tools used to divide the image into different semantic

regions and classify these regions into predefined classes.

Semantic segmentation helps in understanding the layout of

the scene and hence it is increasingly becoming a vital factor

in anomaly detection, autonomous driving vehicles, object

detection, etc. [1]. Semantic segmentation remains challenging

because of variation within a class, loss of perspective, the

context of the scene, the presence of noise, illumination

changes etc. Semantic segmentation can be achieved by us-

ing traditional machine learning approach like Conditional

Random Field (CRF) and deep learning approach based on

Convolutional Neural Network (CNN).

CRF based algorithms are widely used because of their abil-

ity to capture context information. This framework generally

consists of unary potential and pairwise potential energies.

Unary potential energy captures local features which are

dependent on pixel itself while pairwise potential energy cap-

tures spatial information. Different potential energies capturing

various features like texture, colour location etc. needs to be

manually encoded into the model. However, these hand-crafted

features may fail to capture all the variations in the data.

Recently, a modification of multi-layer perceptron called as

CNN gained great success in semantic segmentation, object

detection and image classification [2], [3], [4], [5]. This is due

to the fact that CNN captures context information which plays

an important role in these tasks. The accuracy of segmentation

depends on local features (colour, intensity etc.) and global

features like (texture, context etc.). The ability of CNN to

learn both these features in an end to end style has led to

its success in semantic segmentation. Hence a deep learning

approach is preferred for semantic segmentation because they

are dependent on learned features.

The success of automated systems like anomaly detection,

event detection etc. in aerial videos relies greatly on scene

understanding for greater accuracy. However, there is a limited

study on semantic segmentation of UAV videos due to the lack

of available dataset. The aim of this study is to analyze the

performance of CNN based semantic segmentation algorithms

on aerial videos. Also, in the present paper, UAV aerial

video dataset is presented for semantic segmentation. The

proposed aerial video dataset consists of various scenarios

taken from different regions along with annotations. Two

widely used CNN based semantic segmentation algorithms,
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Fully Convolution Network (FCN) and U-Net, are used to

evaluate the performance of semantic segmentation on aerial

images.

The remaining part of the paper is organized into following

sections. Section 2 deals with the recent developments in

semantic segmentation of aerial videos. Section 3 describes

the detailed methodology of the proposed system followed by

results and discussions briefed in Section 4. Finally, conclu-

sions are given in Section 5.

II. RELATED WORK

Semantic segmentation divides the image into regions and

labels each region with a predefined class label. Identifying

the layout of the scene provides information about the spatial

distribution of the object and their relationship with the

environment. A brief overview of semantic segmentation is

presented below. A detailed review of semantic segmentation

of images can be found in [1].

The importance of texture, context and spatial information

of pixel in semantic segmentation is explained in [6]. Here

neighbouring pixels are used for labelling the pixel in con-

sideration which will help in segmentation accuracy. Immense

work has been carried out for semantic segmentation using

CRF based approach since they are able to capture spatial

information [6], [7], [8], [9]. CRF framework consists of unary

potential described by local features and pairwise potential.

This unary potential can be varied according to the necessity

[10], [11]. Also, higher order potential energies are explored

[12] in order to improve segmentation accuracy.

Recently, CNN’s are widely explored for semantic segmen-

tation due to their ability to learn complex features [13], [3],

[14], [2]. Encoder and decoder-based architecture are more

popular because they learn deep features which give more

accurate results compared to handcrafted features [13], [3].

In a separate study, the convolutional layer is replaced by

atrous convolutional operation [14]. This enables to capture

more spatial information with a smaller number of parameters.

There are several numbers of works wherein CRF and CNN

frameworks are combined in order to improve the segmenta-

tion accuracy [2].

There are few works exploring semantic segmentation of

Po1SAR aerial images using CNN [15]. These images are able

to capture information from the vast area however, quality of

image acquisition depends on the climate in Po1SAR images,

therefore, limiting this application.

Aerial videos captured through UAV are generally used for

detecting and tracking objects in a given scene [1]. Few aerial

video datasets are developed for multiclass object tracking

[16] and anomaly detection [17]. These datasets are provided

along with annotations for object detection. To analyze the

scenario more precisely, understanding the layout of the scene

is essential which gives an insight into the context of the

scenario. Hence a sophisticated aerial video dataset along with

ground truth for semantic segmentation is need of the hour.

Due to the lack of aerial video dataset and annotation set for

semantic segmentation a new aerial video dataset is proposed

to be developed in this study which will be mainly used for

semantic segmentation. U-Net and FCN algorithms are used

for semantic segmentation of captured dataset. Finally, the

system is evaluated by various performance metrics.

III. DATASET: MANIPAL UAV AERIAL VIDEO DATASET

DJI Phantom 3 professional drone is used to capture aerial

videos. The resolution of the captured videos is 1280 x

720 resolution at 29 frames per second. These videos are

collected at an altitude of 25 meters approximately. The videos

are collected inside Manipal Institute of Technology campus,

Manipal, India. For the present study, two semantic classes

are considered namely greenery and roads. Greenery class

includes trees, gardens and foliage. Road class includes the

parking lot, footpath and roads. The aerial videos are captured

from 8 different regions covering various scenarios such as

parking lot, library, etc. The maximum and minimum duration

of the videos is about 12 minutes and 10 seconds respectively.

Processing all the frames is time-consuming and tedious.

Hence keyframes are identified using the shot boundary de-

tection algorithm. These keyframes are given as input to

both the segmentation algorithms. Annotations for semantic

segmentation are provided for keyframes using LabelMe tool

[18]. Ground truth images are necessary for establishing the

reliability of the system by stating the accuracy of prediction.

But the creation of these ground truth images is a challenging

task for aerial images since there exists ambiguity in labelling

the pixels at the boundary of two classes of objects. For in-

stance, the foliage of the trees appears to be indefinite from the

top view (Figure 1). Few original frames and corresponding

ground truth masks are shown in Figure 1. In the ground

truth image, green colour represents the greenery class and

grey colour represents the road class. Table I presents a brief

description of the data set.

TABLE I
DESCRIPTION OF DATA SET

Total number of videos 13
Minimum duration 10 sec
Maximum duration 12 min

Total number of frames 2494
Number of class considered for annotations 2 (road, greenery)

Image resolution 1280x720 pixels
Frames per second 29

Approximate altitude 20-30 mts

IV. METHODOLOGY

In the present study, the shot boundary detection algorithm

is first used to identify the keyframes. Subsequently, semantic

segmentation is performed on these keyframes by using FCN

and U-Net.

A. Shot boundary detection

The captured UAV aerial video dataset has 29 fps. Hence

the variation between each consecutive frame is minute.

Therefore, keyframes are identified using the shot boundary
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Fig. 1. Sample images from dataset and its annotation

detection algorithm to ease the analysis of frames. Figure 2

describes the process of keyframe identification where shot

boundaries are identified from consecutive frames and the

entire block is represented by the middle frame. This middle

frame is the keyframe.

Fig. 2. Identification of Key frames

Shot boundaries are identified in each frame by dividing

each frame into non-overlapping grids of size 16x16. Cor-

responding grid histogram difference is computed between

two consecutive frames by adopting chi-square distance and

is given as follows,

d(Hi, Hi+1) =
∑
i

(Hi(I)−Hi+1(I))
2

Hi(I)
(1)

Where, Hi represents the histogram of ith frame and Hi+1

represents the histogram of (i + 1)th frame. I represents the

image patch at an identical location in both the frames. The

average histogram difference between two consecutive frames

is calculated as follows,

D =
1

N

N∑
K=1

dk(Hi, Hi+1) (2)

Where, D represents the average histogram difference of two

consecutive frames and dk represents the chi-square difference

between kth image patches. N represents the total number

of image patches in an image. Shot boundary is identified at

frames where the histogram difference is greater than threshold

Tshot.

ShotBoundary =

{
1 Di −Di+1 > Tshot

0 otherwise
(3)

Where i and i+ 1 represents two consecutive frames. Key

frames identified are further processed by using semantic

segmentation algorithms to identify the various objects

present in the scene (greenery, roads). U-Net and FCN

models are considered in the present study to perform

semantic segmentation because they don’t require large

datasets.

B. U-Net
U-Net model was originally proposed by [13] and has been

used for various applications such as biomedical image seg-

mentation [13], remote sensing [19], [20], [21], etc. This archi-

tecture mainly consists of two paths namely contracting path

and symmetric expanding path. Region localization is done in

expanding the path with the help of features extracted in the

contracting path. Convolution operation followed by Rectified

Linear Unit (ReLU) activation function is implemented in

the contracting path for the purpose of extracting features.

Among the extracted features the relevant ones are identified

by applying the maxpool function. The model learns patterns

by adopting data augmentation and gradient descent method.

Softmax activation is used in the last layer of architecture to

obtain the probability of the pixel belonging to each class.
The U-Net architecture proposed in [13] was used for

grayscale images of size 572x572. In this study, U-Net

architecture is modified accordingly to process aerial images.

The network is modified to handle colour images (RGB)

of size 256x256 instead of only grey scale images. This

is achieved by using 3D convolutional operation at each

layer. Along with maxpool operation, padding is also

considered in each layer to retain the most relevant features

for further processing. Figure 3 represents the modified U-net

architecture for segmenting of aerial videos.
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Fig. 3. Modified U-Net architecture for UAV aerial video semantic segmentation

C. FCN with VGG16 Backbone

Fully convolution networks proposed by authors in [3],

are widely used for semantic segmentation because it can

be developed by using other CNN layers like VGG16 [4],

ResNet [14] etc. FCN uses CNN blocks of other architecture

like [4], as backbone architecture to extract features. In

the present study, FCN32 with VGG16 is incorporated as

a backbone architecture. VGG16 architecture is used as a

backbone because of its simple structure. The last dense layer

of VGG16 is replaced by fully convolutional layers to obtain

output segmentation map. In every layer, the convolution

operation is followed by ReLU activation function. Maxpool

operation is performed in order to preserve the most relevant

features for later stages. The model is trained from scratch on

the UAV aerial video dataset. The last layer is modified for

binary class classification. Softmax operation is used in the

last layer in order to obtain the probability of pixel belonging

to each class. The architecture of FCN is shown in Figure 4.

Fig. 4. FCN architecture [3]

V. RESULTS AND DISCUSSION

In the present study, U-Net and FCN architectures are

used to perform semantic segmentation on created UAV

aerial video dataset. Results obtained by applying both the

algorithms are presented henceforth. 80% (80 images) of the

data captured is used for training the model, 10% (10 images)

is used for the purpose of validation and remaining 10% (10

images) is used for testing. To evaluate the performance of

both the algorithms, Mean Intersection over Union (MIoU),

Pixel Accuracy (PA), precision, recall and F1-score methods

are used. MIOU is calculated as follows.

MIoU =

∑
i xii

C(
∑

i

∑
j xij +

∑
j xij − nii)

(4)

Where C is the number of classes which is two in this

study. xij represents the number of pixels belonging to class

i and predicted as class j. Pixel accuracy is calculated as

follows.

PA =

∑
i xii∑

i

∑
j xij

(5)

A. Shot boundary detection

In the present study, the shot is identified by using shot

boundary detection algorithm. Histogram difference between

two consecutive frames are identified and is compared with the

threshold Tshot. The value of Tshot is experimentally found

to be 0.2.

B. U-Net

The U-Net model is trained from scratch on UAV aerial

video dataset. Data augmentation and transfer learning are not

necessary because sufficient training data is available in the
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learning phase. Due to the memory constraints, the batch size

is set to 10. Categorical cross entropy is used for obtaining loss

function. The weights are initialized following the approach of

[5]. The model loss and accuracy curve for training phase is

obtained after it is trained for 100 epochs which are shown in

Figure 5 and 6. The loss decreases nonlinearly as the number

of epochs increases.

Fig. 5. Training and validation loss for U-Net architecture

Fig. 6. Training and validation accuraccy for U-Net architecture

The segmentation result obtained from the U-net model on

the aerial video dataset is shown in Figure 7. Segmentation

accuracy measure is computed to establish reliability. The

computed overall pixel accuracy, precision, recall, F1-score

and MIoU of the system is given in Table II.

As seen from Figure 8 and 9, few false positives are present

for greenery class which occur for the pixels covering the

parking area. Presence of shadow is the root cause for this

ambiguity since the model struggles to handle illumination

changes. The sensitivity of the model to these illumination

changes can be addressed by incorporating colour and texture

features.

As observed there is the presence of false negatives for

greenery class in some of the cases which are again due to

the presence of the shadow. This effect is clearly observed in

Figure 10 where greenery class objects are classified as road

pixel. The same is marked by the yellow circle in the figure.

(a) (b) (c)

Fig. 7. Semantic segmentation results of U-Net. (a) Original images (b)
Ground truth images (c) U-Net segmentation results

(a) (b) (c)

Fig. 8. Semantic segmentation results of U-net. (a) Original image (b) Ground
truth image (c) Image showing false positives for U-Net model

(a) (b) (c)

Fig. 9. Semantic segmentation results of U-Net. (a) Original image (b) Ground
truth image (c) Image showing false positives for U-Net model

(a) (b) (c)

Fig. 10. Semantic segmentation results of U-Net. (a) Original image (b)
Ground truth image (c) Image showing false negatives for U-Net model
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C. FCN

In the present study, VGG16 is used as a backbone ar-

chitecture of FCN. The network weights are learnt by using

the created UAV aerial video dataset. Transfer learning is not

preferred in this case because of the availability of sufficient

training data. The model adopted is trained for 100 epochs

with a batch size of 10. The loss function used is categor-

ical cross entropy and weights are initialized following the

approach of [5]. The model training loss and accuracy curve

obtained are shown in Figure 11 and 12.

Fig. 11. Training and validation loss for FCN architecture

Fig. 12. Training and validation accuracy for FCN architecture

TABLE II
PERFORMANCE METRICS OF U-NET AND FCN MODEL

Precision Recall F1-score PA MIoU
U-net 0.95 0.95 0.95 87.31% 0.911
FCN 0.96 0.96 0.96 89.7% 0.918

It is visible from the curves that the training loss decreases

as the number of epochs increases. The pixel accuracy, preci-

sion, recall, F1-score and MIoU calculated for FCN is shown

in Table II. The segmentation results of FCN on UAV aerial

videos are shown in Figure 13. The performance of FCN

architecture on segmentation is similar to the performance

of U-Net architecture. However, it is seen that there is less

occurrence of false positives for greenery class compared to

that of U-Net architecture which indicates that, FCN model is

able to handle illumination changes. It is also observed that

MIoU of both the algorithms are similar. Pixel accuracy of

FCN is 2.39% greater than U-Net architecture. In spite of

ambiguities in class boundaries in the ground truth image, the

U-Net and FCN models are able to segment the regions with

high accuracy.

(a) (b) (c)

Fig. 13. Semantic segmentation results of FCN. (a) Original images (b)
Ground truth images (c) FCN segmentation results

VI. CONCLUSION

To address the scarcity of annotated aerial videos for se-

mantic segmentation a new UAV aerial video dataset is created

for the same. These videos are collected from various regions

which include different scenarios. The dataset is annotated

manually for semantic segmentation into two major classes

(road, greenery). U-Net and FCN are employed on developed

aerial video dataset to achieve semantic segmentation. A com-

parative analysis is carried out between these two algorithms

and the obtained results are presented. It is observed that CNN

based algorithms like U-Net and FCN do not always require

large dataset for learning the patterns. Accuracy difference of

FCN and U-Net model is 2.7 per cent which indicates that both

the algorithms perform competitively well for small dataset. In

future, we would extend this dataset to cover more locations

covering a wider area for multi-class classification. Further,

the proposed dataset may be used for several applications like

anomaly detection, event detection, object tracking etc.
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