
Automatic Segmentation of River and Land in SAR
Images: A Deep Learning Approach

Manohara Pai M. M
Department of Information and Communication Technology

Manipal Institute of Technology
Manipal Academy of Higher Education

Manipal, India

mmm.pai@manipal.edu

Vaibhav Mehrotra
Department of Information and Communication Technology

Manipal Institute of Technology
Manipal Academy of Higher Education

Manipal, India

vaibhavmehrotra2197@gmail.com

Shreyas Aiyar
Department of Information and Communication Technology

Manipal Institute of Technology
Manipal Academy of Higher Education

Manipal, India

shreyas.aiyar96@gmail.com

Ujjwal Verma
Department of Electronics and Communication Engg

Manipal Institute of Technology
Manipal Academy of Higher Education

Manipal, India

ujjwal.verma@manipal.edu

Radhika M. Pai
Department of Information and Communication Technology

Manipal Institute of Technology
Manipal Academy of Higher Education

Manipal, India

radhika.pai@manipal.edu

Abstract—The ubiquitousness of satellite imagery and power-
ful, computationally efficient Deep Learning frameworks have
found profound use in the field of remote sensing. Augmented
with easy access to abundant image data made available by
different satellites such as LANDSAT and European Space
Agency’s Copernicus missions, deep learning has opened various
avenues of research in monitoring the world’s oceans, land, rivers,
etc. One significant problem in this direction is the accurate
identification and subsequent segmentation of surface-water in
images in the microwave spectrum. Typically, standard image
processing tools are used to segment the images which are time-
inefficient. However, in recent years, deep learning methods for
semantic segmentation is the preferred choice given its high
accuracy and ease of use. This paper proposes the use of
deep-learning approaches such as U-Net to perform an efficient
segmentation of river and land. Experimental results show that
our approach achieves vastly superior performance on SAR
images with pixel accuracy of 0.98 and F1 score of 0.99.

Index Terms—Semantic Segmentation, SAR image, U-Net,
Deep Learning.

I. INTRODUCTION

Observation of surface water is an essential component in

understanding and deriving insights about local ecological and

hydrological processes. Surface water, in contrast to atmo-

spheric or groundwater, largely refers to water on the surface

of Earth such as rivers, lakes and wetlands. Surface water

is often subject to external forces that result in expansions,

contractions and changes in appearance, lending a dynamic

component to the flow of the water. Extreme changes to

surface water can have serious repercussions such as floods

which is currently the most common natural disaster to affect

the world . Thus, it is imperative to develop approaches to

detect and constantly monitor and predict future water levels.

The recent large-scale proliferation of remote-sensing satel-

lites such as the Sentinel-1, Landsat, and Radarsat resulted

in regular monitoring of the Earth at high-frequency periodic

intervals. Further, these satellites are equipped with high-

resolution microwave sensors capable of imagery in all terrain

conditions as well as showing invariance to day and night

cycles. One of the significant advantages is their ability to

penetrate thick cloud cover.

Detection of surface water in Synthetic Aperture Radar

(SAR) images until now has largely been addressed by elab-

orate image processing algorithms. Some commonly applied

approaches include the watershed algorithm [1], thresholding

[2] and morphological profiling followed by traditional ma-

chine learning algorithms such as Support Vector Machines

(SVM’s). Although these algorithms have been shown to

perform effectively for a specific polarization, the model does

not generalize across polarizations. In addition, the presence

of foreign objects such as bridges results in gaps in the output

[1]. This and the significant time investment in terms of hand-

tuning paves the way for more robust approaches such as

neural networks.
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The advent of very deep neural-networks in the past few

years along with off-the-shelf libraries for learning algorithms

has enabled easy building of end-to-end models to perform

common computer vision tasks such as image recognition, ob-

ject detection and image segmentation. Deep learning methods

offer a significant advantage over traditional image processing

pipeline in that there is little domain knowledge or insight

required. One such instance of image segmentation is seman-

tic segmentation in which specific regions of an image are

automatically categorized as one among several predetermined

classes. Semantic segmentation has found significant success

in areas such as self-driving cars [3] as well as diagnostics of

medical images [4]. In this paper, it is proposed to develop an

efficient methodology to tackle the problem of surface water

detection from satellite SAR images.

The primary contribution in this paper is as follows:

1) The usage of the U-Net architecture to perform semantic

segmentation of surface-water and land using high-

resolution SAR data.

2) Show the effectiveness of transfer learning, a modern

deep learning paradigm which reuses knowledge learnt

from similar tasks.

A. Representation of Water in SAR Images

SAR images are typically represented as the grayscale

images wherein the associated intensity value of each pixel

is denoted by the proportion of microwave which is back-

scattered. Land, which is usually rough, appears bright with

high intensity. Water appears dark since most of the inci-

dent radar energy is scattered away. The significant contrast

difference can thus be exploited for efficient segmentation.

An inherent problem in SAR images is Speckle Noise, a

form of multiplicative noise that corrupts SAR images by

altering backscatter. Therefore, speckle noise can distort the

river edges, thus making it difficult to accurately determine the

boundaries. Fortunately, robust algorithms such as the Median

filter and the Lee filter exist to reduce speckle noise [5].

B. Motivation for U-Net Architecture

In this paper, it is proposed to demonstrate the effectiveness

of U-Net architecture [6] using a manually labelled dataset of

SAR images. Each pixel is thus labelled either as river/water

bodies or land. U-Net proves to be a well-suited model

because:

1) U-Net works with very few training images due to the

effectiveness of data augmentation approaches.

2) It has proven to detect boundaries of an irregular and

rough nature with very high accuracy.

The rest of this paper is organised as follows. Section

II reviews similar work, section III details the proposed U-

Net-based SAR segmentation, and experimental results are

presented and analysed in Section IV. Finally, conclusions are

drawn in Section V.

II. RELATED WORK

Primary work in the field of semantic segmentation of

SAR images has been towards target recognition and road

segmentation. Cui et al. [7] used region-based convolutional

neural networks for target detection in large scene images. The

objective of their model was to detect targets such as tanks

and armoured cars, as provided in the MSTAR dataset. The

methodology involved a fast sliding method to slice and resize

the images that are input to the model. An average accuracy

of 94.67% was recorded.

Yang et al. [8] used Conditional Random Fields on re-

gion adjacency graphs for the semantic labelling of SAR

images. Gabor filters were employed to extract texture infor-

mation whereas to exploit backscattering intensity information,

gamma distribution and histogram cues were used. The highest

accuracy of 86.5% was reached when all the above-mentioned

techniques were used.

Henry et al. [9] used deep fully-convolutional neural net-

works for road segmentation in SAR images. They found that

by adding a tolerance rule towards spatially small mistakes,

fully convolutional neural networks (FCNNs) proved to be an

effective model for road segmentation, overcoming the major

difficulty of isolating thin objects in a speckled environment.

However, the model had difficulty generalising over a variety

of patterns and would fail in applications wherein the contour

of the water bodies is extremely irregular.

A Deep Learning approach based on a modified U-Net

architecture has been shown to work by Zhengxin Zhang et

al. [10] for the extraction of the road using the Massachusetts

roads data set. Relaxed precision and recall were used as the

evaluation parameters along with a break-even point, a point

where the relaxed precision and recall were equal. The deep

residual U-Net or ResNet showed a break-even point at .9187,

outperforming the conventional U-Net with a break-even point

of .9053.

River channel segmentation has been explored in [1] using

an image processing approach (Watershed segmentation). The

primary drawback of using the watershed segmentation algo-

rithm is irregular and jagged boundaries of rivers. Similarly,

objects such as bridges and ships can cause the algorithm to

get ”stuck” within the local high contrast region of the river.

III. PROPOSED METHODOLOGY

In this section, the proposed framework for surface-water

and land segmentation is presented. In this study, Sentinel

1 SAR images from the European Open Access hub [11],

which provides free access to the Sentinel family of products,

was manually collected. Using Sentinel’s Application Platform

(SNAP) [12], the Refined Lee filter [5] is applied to despeckle

the SAR images. Subsequently, the open source python library

labelme was used to manually annotate the image. Finally,

data-augmentation techniques are applied to generate new

training samples.
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Fig. 1. Proposed Methodology

A. Despeckling with Refined Lee Filter

To reduce the effect of speckle noise, filtering techniques

that preserve the boundaries of the river are applied to the

SAR images. Ardhi Wicaksono Santoso et al. [5] performed

a comparative study of filters based on properties such as

Speckle Index (SI), Average Difference (AD), Equivalent

Number of Looks (ENL), and have determined the Lee filter

to have the best metrics. The Refined Lee filter [13] is an

improvement over the original Lee filter which dynamically

adjusts the number of pixels used in the sliding window by

employing the K-Nearest Neighbour algorithm.

B. Semantic Segmentation Architecture

In this work, the performance of U-Net architecture [6] is

studied for semantic segmentation of surface-water and land.

The U-Net architecture is a popular architecture for semantic

segmentation originally proposed for biomedical image seg-

mentation. It consists of three paths, a contracting path and an

expansive path which correspond to the encoder and decoder

architectures respectively. The presence of a bridge acts as an

intermediate layer between the two paths. The additional copy

and crop operations between the encoder and decoder halves

improve localisation and generate highly precise segmentation

maps while retaining high-level semantic information.

Transfer Learning: Training very deep neural network

architectures is usually not a feasible task given the

requirements of computational power and limitations on the

size of the dataset. Transfer learning is based on the principle

of reusing the weights of a pre-trained model for a similar

task. Such an initialisation has been proven to work better

than random weight initialization [14]. In this paper, it is

proposed to compare the results obtained by learning the

U-Net model from scratch and using the pre-trained weights

as learnt by the U-Net model on the ISBI 2015 Cell Tracking

dataset.

IV. RESULTS & DISCUSSION

A. Experimental Procedure

Dataset: A subset of the publicly available SAR data from

the European Copernicus Satellite mission is utilized to eval-

uate the performance of the proposed framework. This study

utilizes 40 level 1 Ground Range Detected (GRD) images

acquired over land using the Interferometric Wide (IW) swath

mode with a 5x20m resolution. Image data from coastal areas

of India (Mangalore-Udupi region) was collected and rescaled

appropriately to produce tiles of 512x512 pixels. Subsequently,

areas of interest, which included images with river pixels, were

selected. For training and testing, created a dataset of 30 and

10 images respectively. The training set also includes only

”river” and only ”land” images. The training set contains 12%

of river pixels and the test set 19% of river pixels. The class

imbalance problem is handled by optimising the Dice Loss

function for the U-Net model [15]. Labelling the images was

performed to create the ground truth of the respective SAR

images. Some of the images in the training set along with the

ground truth are displayed in Figure 2.

The proposed algorithm was implemented in python 2.7

using the keras functional API on a Intel Xeon with a Tesla

V100 GPU, 32 GB RAM on a system running CUDA 9.0.

Data Augmentation: Manual labelling of a large number

of river boundaries in SAR images is a laborious and time-

consuming task. Therefore, data augmentation is the preferred

choice in such a scenario. Data augmentation is a technique

that applies transformations such as rotation, translation, scal-

ing, etc to improve the usage of the annotated data and achieve

invariance [16] with respect to width and height shifts along

with rotation. Similar to tissue deformation, river water flow is

also susceptible to extensive contouring and changes in width.

In this study, the data is augmented by rotating, translating,

zooming, horizontal flipping and shearing of the original

data. The images are augmented in real time by randomly

selecting the parameters to transform. Finally, 50,000 images

are obtained which are used to train the network.

Training: The weights of the network were randomly

initialised with a normal distribution with mean zero and

standard deviation
√
2/n. This initialisation has been proven

by [17] to allow for very deep architectures to converge. In all

the layers a zero padding is applied such that the dimension

of the output is the same as the input (same padding).The

Adam optimiser, with a learning rate of 10−4 is used to learn

the network parameters. The U-net model was trained for 5

epochs, each of 2500 steps with a batch size of 4.
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Fig. 2. Examples from the training set, column (a) corresponds to SAR
images and column (b) is the ground truth.

Loss Function: For the U-Net model, the soft-dice loss

function [15] is a typically preferred loss function to reduce

bias in predictions. It is especially useful when the training

data suffers from a class imbalance problem. It is formulated

as follows:

Dice Loss =
2 |A ∩B|
|A|+ |B|

The numerator, A∩B represents the intersection of the sets

A and B and the denominator, the number of elements of A
and B respectively. In this study, the soft-dice loss function

is used because of the class imbalance problem as discussed

earlier.

B. Evaluation Metrics

To evaluate the algorithms, several metrics namely Preci-

sion, Recall, Mean Intersection over Union (MIoU) as well

as the Pixel Accuracy (PA) is used [18]. Precision is the

fraction of the water-body pixels which are labelled correctly

and Recall is the fraction of all the labeled water-body pixels

that are correctly predicted. They are formulated as follows:

Precision =
True Positive

True Positive+ False Positive

Recall =
True Positive

True Positive+ False Negative

Since neither Precision nor Recall is sufficient to completely

describe the performance of a model, the F1 score, a weighted

harmonic mean of the two metrics is also employed. It is given

as follows:

F1 =
2 · precision · recall
precision+ recall

The models are also evaluated with respect to the Mean

Intersection over Union (MIoU) as well as the Pixel Accuracy

(PA). The MIoU measures the similarity between the labelled

image and the ground truth. Pixel accuracy simply reports the

number of pixels correctly classified by the model. The two

metrics are as follows:

MIoU =
(1/C)

∑
i nii

ti +
∑

j nji − nii

PA =

∑
i nii∑
i ti

where C is the number of classes, nji is the number of

pixels of class i mistakenly classified as belonging to class j.

ti represents the number of pixels belonging to class i.

C. Results

In this work, two models are used: Vanilla U-Net and

Transfer U-net. The Vanilla U-Net architecture is trained on

our SAR images dataset, while Transfer U-Net is trained on

the 2015 ISBI Cell Tracking challenge and fed the weights

generated for our transfer learning task. The results of the

transfer learning task represent the best results i.e the one

obtained by retraining the decoder of the U-Net model. The

network architectures are evaluated on 10 test images with

respect to the metrics defined above. The quantitative results

of the models is shown in Table I. Qualitatively, the visual

outputs of the segmentation models can be seen in Figure 3.

TABLE I
PERFORMANCE COMPARISON

Architecture Precision Recall F1 MIoU PA
Vanilla U-Net 0.9927 0.9919 0.9923 0.9551 0.9876

Transfer U-Net 0.9943 0.9881 0.9912 0.9512 0.9859

Both the architectures perform very well on SAR images

and obtain a good F1 score of 0.99. Unlike the traditional

image processing approaches such as Watershed segmentation,

U-Net models can identify the fine details. Moreover, the

transfer U-net architecture is able to even segment rivers whose
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width is small. However, Vanilla U-Net fails to identify small

width-rivers.

One more interesting result is surprising effectiveness of

the Transfer Learning approach. An extensive experimentation

with retraining selected decoder layers is done. Retraining only

the last 1x1 Convolution layer results in predictions that are

significantly noisy. Similarly by retraining only the second last

convolution layer produces a model with lesser noise and so

forth. It is discovered that increasing the number of trainable

layers in the decoder architecture results in successively bet-

ter performance. Performance peaks on retraining the entire

decoder architecture which results in a model that performs

comparatively to the U-Net model that learned its weights from

scratch. It is seen that the spatial features map very well from

the biomedical image segmentation problem over to surface

water segmentation in SAR data.

V. CONCLUSION

In this paper, a robust methodology is proposed for an

efficient and highly precise segmentation of surface river water

and land. In addition, two different implementation of U-Net

architecture is studied on SAR images, one in which U-net

is trained from scracth (Vanilla U-Net) and other in which

pretrained weights are used (Transfer U-Net). Experimental

results show that the both architectures gave similar perfor-

mance in terms of F1 score, pixel accuracy and mean IoU.

However, transfer U-Net is able to identify very minute details

in the image such as small rivers etc. One limitation however,

to this approach is the possibility of false positives, that is

the model may identify water in regions of relatively low

intensity. For our future work, we would extend this model

for multi-class classification and introduce information from

panchromatic satellite imagery for verification.
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Fig. 3. Experimental Results of Proposed Architecture. Column (a) is the SAR image captured by the Sentinel-1 satellite. Column (b) is the segmentation
map produced by the Vanilla U-Net model. Column (c) is the map produced by the Transfer U-Net model.

20


