
Computers & Geosciences 154 (2021) 104805

A
0

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

DeepRivWidth : Deep learning based semantic segmentation approach for
river identification and width measurement in SAR images of Coastal
Karnataka
Ujjwal Verma a, Arjun Chauhan a, Manohara Pai M.M. b,∗, Radhika Pai b,∗

a Department of Electronics & Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
b Department of Information & Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India

A R T I C L E I N F O

Keywords:
Semantic segmentation
Synthetic Aperture Radar
River width measurement
Convolutional neural networks

A B S T R A C T

River width is an essential parameter for studying the river’s hydrological process and has been widely used
to estimate the river discharge. The existing approaches to measuring river width are based on remotely
sensed imagery such as MODIS, Landsat to identify the river, and then estimate the river width. In this work,
an alternate approach for river width estimation is proposed using the under-explored modality Synthetic
Aperture Radar (SAR) images. SAR, unlike the traditional electro-optical sensors, can penetrate the clouds and
can be used to collect the data in all weather conditions and even during the night. In this work, the river
identification process is manifested as a binary semantic segmentation task in SAR images. For this, two state
of the art deep learning algorithms (U-Net, DeepLabV3+) are utilized for river identification and subsequent
width measurement. The proposed approach (DeepRivWidth) is used to estimate the width of the river of the
Mangalore–Udupi region of Coastal Karnataka (India). These rivers originate or pass through Western Ghats
(UNESCO world heritage site), and the proposed river width measurement approach could provide critical input
for ecologists besides assisting efficient water management of the region. The estimated width is compared
with the manually measured width, and significant improvement in the accuracy was obtained compared to
existing river width measurement approaches. Besides, the performance evaluation of semantic segmentation
approaches for river identification on a publicly available dataset provides valuable insights into segmenting
rivers in SAR images.
1. Introduction

River width is one of the crucial river parameters for studying
the river’s hydrological, biological, geological, and chemical processes
(Ling et al., 2019). Besides, river width provides useful information
for measuring carbon dioxide movement between rivers and the atmo-
sphere. In addition, flow discharge can also be estimated from river
width information (Ling et al., 2019; Gleason and Smith, 2014). The
study of river width information can provide valuable insights into the
changes in river flow and shape. It could also be used to study extreme
climatic events such as floods and droughts. The temporal river width
information could help identify soil erosion along the river banks over a
certain period and thus assist government agencies in taking preventive
measures at these locations.

Traditionally, the river width is measured in the field, which is
a time-consuming and challenging task in rugged terrain. However,
recent advances in remote sensing technologies have allowed the mea-
surement of these quantities from space. Remote sensing technologies

∗ Corresponding authors.
E-mail addresses: mmm.pai@manipal.edu (Manohara Pai M.M.), radhika.pai@manipal.edu (R. Pai).

provide a cost-effective alternative path to measure these quantities
for a more substantial area as compared to the traditional field mea-
surement. For instance, RivWidth is one of the tools developed for
measuring river width (Pavelsky and Smith, 2008). This tool uses 250-
m Moderate Resolution Imaging Spectroradiometer (MODIS) data and
U.S. Geological Survey National Land Cover Dataset as the input for
identifying Lena and Ohio rivers, respectively. Subsequently, the cen-
terline of the river is estimated using edge detection techniques. Finally,
the river width is measured along the orthogonal direction at each cen-
terline pixel. In another study, a Google Earth Engine based river width
measurement tool is presented in Yang et al. (2020). The tool presented
in Yang et al. (2020) utilizes spectral indices for river identification.
Besides, Global River Widths from Landsat (GRWL) dataset is also
utilized to further refine the river identification results. Subsequently,
the center line of the river is computed using distance transform and
skeletonization. Finally, the width of the river is measured along the
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direction orthogonal to the centerline. In a separate study (Ling et al.,
2019), the author proposes to use coarse resolution remotely sensed
imagery (MODIS, Landsat) for river width estimation. This approach
focuses on accurate river identification by utilizing a deep learning-
based super-resolution mapping to generate a fine resolution river
map.

As discussed in Yang et al. (2020), the accuracy of river width
measurement heavily depends upon the robustness of the method used
for the identification of rivers. Thresholding is used as the existing
approach for river identification, where the threshold is determined
experimentally on a subset of data (Pavelsky and Smith, 2008; Yang
et al., 2020). Besides, these methods rely on MODIS, Landsat images,
which are affected by cloud presence (Li et al., 2014; Mateo-García
et al., 2017). In this work, an alternative approach for river iden-
tification is proposed by utilizing under-explored modality Synthetic
Aperture Radar (SAR) images. Unlike the traditional electro-optical
sensors, SAR can penetrate the clouds and can be used to collect the
data in all weather conditions and even during the night. Note that river
width measurement algorithms proposed in Yang et al. (2020) utilizes
a separate post-processing step to identify the presence of obstructions
such as clouds, clouds shadow, snow, ice, and other natural factors. In
comparison, the use of SAR image in measuring river width eliminates
the need for such post-processing steps.

The authors in Klemenjak et al. (2012) proposed a mathematical
morphological (path opening, closing) based approach for identifying
rivers from TerraSAR-X data. However, determining the parameters
of path opening and closing (size, shape of structuring element) is a
challenging task and can severely affect the results obtained. In a sep-
arate study, a watershed based segmentation approach is presented in
Ciecholewski (2017) for river identification in Polarimetric SAR. How-
ever, this method requires a manual identification of the seed region
for an accurate river identification. Texture analysis based approach
has also been utilized to identify the homogeneous regions of rivers
(Sghaier et al., 2016). However, the texture descriptor needs to be
compared with a predetermined threshold to identify the homogeneous
region. Indeed, identifying the appropriate thresholding parameter is
challenging and the accuracy of the method significantly depends on
the correct determination of this parameter. In contrast, the proposed
method utilizes an end-to-end CNN architecture for river identifica-
tion thus eliminating the need to design hand crafted features, and
post-processing the obtained results with the morphological operators.

Further, this work formulates river identification as a semantic seg-
mentation problem. Segmentation is a widely studied topic in computer
vision and has been used for various applications such as biomedical
image analysis (Ronneberger et al., 2015), autonomous driving (Cordts
et al., 2016), UAV aerial video analysis (Girisha et al., 2019), and
precision agriculture (Verma et al., 2015, 2014). Semantic segmenta-
tion refers to the process of assigning a class label to each individual
pixel in the image. However, the use of semantic segmentation on
satellite images has been limited to the identification of oil spill, ships,
buildings, roads, and similar objects. Wurm et al. (2019), Li et al.
(2019), Zhou et al. (2018) and Song et al. (2020). To the best of our
knowledge, there are limited works on the semantic segmentation of
rivers in SAR images (Pai et al., 2019). Further, the river width has
never been measured from SAR images. This work demonstrates that
the river width can be measured precisely in SAR images. Besides,
the process of width measurement has been simplified in this work
by applying a novel approach for river identification using semantic
segmentation on SAR images. The use of SAR images in river width
estimation ensures accurate measurements in all weather conditions.

This work proposes an end-to-end system for river width estima-
tion from SAR images (Fig. 1). In this work, the SAR images of the
Mangalore–Udupi region of Southern India are first segmented using
state-of-the-art semantic segmentation algorithms. This segmentation
map is subsequently utilized to measure the width of rivers of the same
area. The SAR images, along with its labels, is publicly available at
https://github.com/ArjunChauhan0910/DeepRivWidth.
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The main contributions of our work are:
• A river width measurement approach is presented from SAR
images. To the best of our knowledge, there is no existing work on
measuring river width from SAR images. Besides, the performance
of two state of the art semantic segmentation algorithms are
studied for river identification and the challenges encountered in
river identification are highlighted in this work.

• Further, the dataset used in this study will be publicly available.
We believe that the performance evaluation of two semantic
segmentation algorithms on this dataset would serve as a base-
line and further drive research for river segmentation and width
measurement in SAR images. To the best of our knowledge, this
will be the first publicly available dataset for river identification
and width measurement from SAR images.

• The study area of this work are the rivers which originate or
pass through the ecologically sensitive Western Ghats (South-
ern India), a UNESCO World Heritage site. To the best of our
knowledge, there is limited study of rivers from SAR images for
this region (Pai et al., 2019). The use of SAR image enables all
weather monitoring of this ecologically sensitive region.

• Although the study area is the Western Ghats (Southern India),
the experimental results demonstrate the cross-region general-
ization of the proposed approach. It is shown that the model
trained for identifying rivers of one region (Southern India) can be
utilized to identify rivers of a different region (Eastern India), thus
creating an opportunity to develop a global river identification
tool.

The manuscript is organized as follows: Section 2 presents the
proposed approach along with the description of the study area and
the dataset used, Section 3 discusses the results obtained using the
proposed method for river identification and width measurement.

2. Materials and methodology

2.1. Study area and dataset description

This study focuses on measuring the river width of rivers flowing
in the Mangalore–Udupi region of Coastal Karnataka (India). These
rivers originate or pass through the Western Ghats, a UNESCO world
heritage site recognized as one of the world’s eight ‘hottest hotspots’
of biological diversity.1 This study of river width would provide cru-
cial inputs for ecologists and aid in water management of the region
suffering from floods during monsoon (Service, 2020; Paniyadi, 2018)
and frequent water scarcity in summer (Naina, 2019). Besides, the river
width information could aid in increasing fish productivity, especially
in capture-based aquaculture practices (Dineshbabu et al., 2012).

This study utilizes ortho-rectified SAR images with VH polariza-
tion, which is obtained from open source Sentinel-hub EO browser2

for the Mangalore–Udupi region of Southern India. The SAR images
were acquired for approximately three and half years (April 2017 to
December 2020). In total, 45 images (one image per month) with a
resolution of 1967x3004 pixels were obtained. Each pixel in the SAR
images was then hand-labeled manually into two categories — rivers
and non-rivers.

Following this, the pair of images (SAR image and labeled image)
was padded with zeros at the right and bottom ends to get an image of
dimension 2048x3072. Uniform crops of 256x256 were then taken from
these images, which resulted in 96 sub-images from a single image.
Fig. 2 shows the original SAR image along with two sub-images. Also
shown are the corresponding ground truth labels for the sub-images.
The river segmentation and river width measurement method presented
next are applied to these sub-images. Note that the Mangalore–Udupi

1 https://whc.unesco.org/en/list/1342/
2 https://apps.sentinel-hub.com/eo-browser/
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Fig. 1. Overview of the proposed approach for river width estimation: The original full size SAR image is split into 256 x 256 sub-images. The rivers are first identified in these
sub-images using a semantic segmentation approach (U-Net or DeepLabV3+). Finally, the width of the river is measured from the segmentation output.
Fig. 2. Dataset Preparation: Original SAR image of Mangalore–Udupi region along with
two sub-images extracted from the original image. Also shown are the ground truth
mask.

region receives heavy rainfall due to Indian monsoon from May–August
every year. As a result, a few fields submerged with water can be seen
in the SAR images of May and June 2019 (Fig. 6). This work focuses
3

on estimating the river width, so these fields were not included as part
of the ground truth mask.

In this approach, the rivers are first identified (Section 2.2), and
subsequently, the width is measured from the segmented image (Sec-
tion 2.3) with minimal user intervention.

2.2. River identification

The river identification is formulated as a two-class semantic seg-
mentation problem where the foreground class contains all the pixels
corresponding to rivers, and the background class contains the re-
maining pixels. Recently, Convolutional Neural Networks (CNN) based
approaches have furnished state-of-the-art results on public bench-
marks for semantic segmentation. A few of these algorithms include
U-Net (Ronneberger et al., 2015), FCN (Long et al., 2015), DeepLabV3+
(Chen et al., 2018) etc. This work presents the performance evaluation
of two state of the art semantic segmentation algorithms (U-Net, and
DeepLabV3+) for river segmentation.

The availability of manually annotated data is an important factor
in a supervised CNN based semantic segmentation methods. However,
manually annotating each individual pixel in an image is a time con-
suming and error-prone task. The U-Net architecture is best suited for
segmentation tasks with fewer training images (Ronneberger et al.,
2015). Further, DeepLabV3+ is the state of the art method for semantic
segmentation and has outperformed other methods on challenging
semantic segmentation datasets such as PASCAL VOC, Cityscapes, and
similar benchmarking segmentation datasets. Hence, these two meth-
ods have been considered in this study. A summary of these two
approaches is presented below. More details about these methods can
be found in Ronneberger et al. (2015), Chen et al. (2018).

A typical CNN based method for semantic segmentation consists of
an encoder for extracting features from the images and decoder for
inferring class labels for individual pixels. The encoder path of U-Net
(Ronneberger et al., 2015) comprises four blocks of 3 × 3 convolution
and max pooling operations. The first layer of this encoder consists of
64 feature maps with the number of feature maps increases by two after
each layer. The symmetrical upsampling path again consists of four
blocks. Each of these blocks contains a deconvolution layer, followed
by a concatenation of feature maps from the corresponding encoder
block. The result is then fed to 3 × 3 convolution layer with batch
normalization. The encoder path extracts coarse contextual information
while the decoder path helps in precise localization, thus obtaining an
accurate segmentation map.

Another popular encoder–decoder based architecture used for se-
mantic segmentation is DeepLabV3+ (Chen et al., 2018). This architec-
ture is an improvement over the previous iteration DeepLabV3, which
introduced parallel atrous convolution with different rates, thereby
acquiring multi-scale contextual information. The encoder module of
DeepLabV3+ is identical to the encoder module of DeepLabV3. The
decoder module consists of a series of convolution and upsampling
operations to produce an accurate segmentation map. Note that the
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Fig. 3. The river centerline shown superimposed on the binary segmentation result
obtained on a SAR sub-image. Also shown are the point on the river bank 𝑄 and the
river centerline 𝑃𝑗 .

low-level features from the encoder path are concatenated before the
convolution operation.

In this work, two semantic segmentation algorithms’ performance
is compared for river segmentation in SAR images. Note that it is
possible that foreground pixels also contain other water-bodies (low
lying fields submerged with water, lakes, wetlands, reservoirs, etc.) due
to the similar reflection property of water in the SAR image. In such
a scenario, a topological structural analysis is utilized on the binary
segmentation map first to identify all the contours present in the image
(Satoshi and Abe, 1985). Subsequently, the contour, which includes the
maximum number of pixels (contour with the largest area), is selected
as the river’s region. Indeed, in a sub-image of resolution 256 × 256
pixels, it is highly likely that the contour with the highest area is a
river.
4

2.3. River width measurement

The river’s width is measured from the binary segmentation map
consisting of the river pixels in the foreground class. The river width
is measured as the distance between two points on the riverbank along
the direction orthogonal to the localized centerline of the river. This
is achieved in two steps: (1) computation of river centerline and (2)
measuring the distance between two points on the riverbank along the
orthogonal direction to the river centerline.

First, the medial axis (topological skeleton) of the foreground object
is computed. The centerline of the river is then assumed to be repre-
sented by this skeleton. Let us represent 𝑁 pixels on the river centerline
as 𝑃𝑖, 𝑖 = 1, 2,… , 𝑁 . Given a point on river bank 𝑄, the nearest point
𝑃𝑗 (𝑃𝑗 ∈ 𝑃𝑖) situated on the river centerline is first determined. The river
width is subsequently computed as

𝑊 = 2 𝐷𝑒(𝑄, 𝑃𝑗 ) (1)

where 𝐷𝑒(𝑃 ,𝑄) represents the Euclidean distance between points 𝑃 and
𝑄 (Fig. 3). This width 𝑊 is in the unit of the number of pixels, and
can be scaled to the metric unit (Kilometers) by multiplying it with a
scaling factor 𝜎 : 𝑊𝑚 = 𝜎𝑊 . The scaling factor 𝜎 is determined from
the original SAR image.

2.4. Training procedure for river identification

The parameters for the two semantic segmentation algorithms (U-
Net and DeepLabV3+) are learned on the SAR sub-image dataset. This
dataset was split into training and test set based on the timestamp of
the images. The training and validation split contains all sub-images
from April 2017 till March 2019, which amounted to 2400 images.
Note that the resolution of these sub-images is 256 × 256 pixels. The
test split includes 2016 images, which were acquired from April 2019
to December 2020. Note that there are sub-images which contain only
Fig. 4. Loss and Accuracy plot for U-Net and DeepLabV3+ models obtained on training (shown in orange) and validation set (shown in blue). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Semantic Segmentation of SAR images: First and Second row shows the SAR sub-image and its corresponding ground truth. The third and fourth rows show U-Net
Segmentation map and DeepLabV3+ segmentation map respectively.
land or only sea. Therefore, a random training–test split might create
a situation with training/test split containing only land or only sea im-
ages. Thus, the dataset was split temporally into training and test split.
The two semantic segmentation methods, U-Net and DeepLabV3+, are
trained separately on the same dataset described above with the same
training/test split. The FLOPs of the semantic segmentation module was
: 6,20,49,671 for U-Net and 42,17,507 for DeepLabV3+. The models
were trained and tested on a Nvidia GTX1060 mobile GPU with an
5

Intel i7-7700HQ CPU @ 2.80 GHz × 8 processor. On an average, it
took around 30–45 min to train the model.

2.5. Evaluation

River identification. The performance of semantic segmentation algo-
rithms for river identification is evaluated by comparing it with ground
truth images. The following metrics are computed by comparing the
segmentation results and ground truth mask: mean Intersection over



Computers and Geosciences 154 (2021) 104805U. Verma et al.
Fig. 6. Semantic Segmentation of SAR images. Top row represents the full size SAR image of May, June and September 2019 while the second row represents the corresponding
ground truth. The segmentation results obtained using U-Net and DeepLabV3+ are shown in the third and fourth row respectively.
Union (mIOU), F1_score, and mean average precision (mAP). The mIOU
and F1_score are defined as:

𝑚𝐼𝑜𝑈 =
∑

𝑖 𝑥𝑖𝑖

𝐶
(

∑

𝑖
∑

𝑗 𝑥𝑖𝑗 +
∑

𝑗 𝑥𝑗𝑖 − 𝑥𝑖𝑖
) (2)

𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3)

where 𝐶 is the number of classes (two in this study), 𝑥𝑖𝑗 represents the
number of pixels belonging to class 𝑖 and predicted as class 𝑗, Precision
= 𝑇𝑃

𝑇𝑃+𝐹𝑃 , Recall = 𝑇𝑃
𝑇𝑃+𝐹𝑁 with TP, FP and FN are true positives, false

positives and false negative respectively.

River width measurement. The river width estimated (𝑊𝑚) using the
proposed approach is compared with the actual river width (𝑊𝑎) mea-
sured manually from Google Earth. The following metrics are com-
puted to evaluate the performance of the proposed approach: Average
Absolute Error (AAE) and Root Mean Square Error (RMSE):

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =
|𝑊𝑚 −𝑊𝑎|

𝑁
(4)

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 =

√

∑

𝑖(𝑊𝑚 −𝑊𝑎)2

𝑁
(5)

where 𝑁 is the total number of locations where river width is mea-
sured.
6

3. Results and discussion

3.1. River identification

This section compares the performance of the two semantic seg-
mentation algorithms for river identification in SAR sub-images. The
training was done for 100 epochs for both the U-Net and DeepLabv3+
with 50 steps per epoch. The loss function used was binary cross-
entropy since this is a binary class segmentation problem. Adam’s
optimizer was used with a constant learning rate of 1 × 10−4. The
weights were initialized in accordance with Xavier Initialization (Glorot
and Bengio, 2010). Fig. 4 shows the loss and accuracy plot for U-Net
and DeepLabV3+ obtained on training and validation images of the
SAR sub-image dataset.

The identification of rivers in these SAR images is challenging due
to the presence of multiple water bodies and significant variation in
the surface water (Fig. 2). The performance of U-Net and DeepLabV3+
algorithms are evaluated by computing mean Intersection Over Union
(mIoU), mean Average Precision (mAP), and F1_score by comparing it
with ground truth (Table 1). It can be seen that both the algorithms
perform competitively and achieve an mIoU of 0.96. Fig. 5 shows
the segmentation obtained using U-Net and DeepLabV3+. It can be
observed that both methods can identify the river pixels. However, it
was found that a more accurate river segmentation is obtained using
U-Net as compared to DeepLabV3+ (Fig. 5). For instance, the stream
after the river bifurcation is being identified by U-Net (Fig. 5(h))
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Table 1
Evaluation Metrics for binary semantic segmentation of SAR images dataset described
in Section 2.1.

Metrics U-Net DeepLabv3+

mIoU 0.96 0.96
mAP 0.83 0.83
F1 0.97 0.98

but DeepLabV3+ fails to accurately identify this stream (Fig. 5(k)).
Besides, it can be seen that U-Net can identify the riverbanks more
accurately as compared to DeepLabV3+. Further, the island situated
in the river can be located using U-Net (Fig. 5(g)), but DeepLabV3+
erroneously segments it as a river (Fig. 5(j)). It is also observed that
in a few images (less than 2% of test images), both the models (U-
Net and DeepLabV3+) fails to identify very narrow rivers. For better
visualization, the segmentation results on the full-size SAR image is
shown in Fig. 6 for the entire region. The Mangalore–Udupi region
receives heavy rainfall from May–August every year, primarily due
to Indian monsoon. The three SAR images are shown in Fig. 6 were
acquired in May, June, and September 2019. The low lying fields are
inundated with water due to heavy rainfall and can be seen in the SAR
images (as dark pixels) of May and June 2019. However, these fields
are not filled with water in the SAR image of September 2019. These
fields were not included as part of the ground truth mask, because this
work focuses on estimating the river width. Surprisingly, U-Net was
able to generalize better and could detect these submerged fields that
were not in the training images.

These additional fields are ignored by analyzing the total number of
pixels present in each waterbody using topological structural analysis.
The region (waterbody) with the highest number of pixels in the SAR
sub-image was selected, and this was indeed a river. For instance,
Fig. 7 shows the segmentation results obtained using U-Net. It can be
observed that the region with the highest number of pixels is indeed
the river.

There are limited works on river identification by binary semantic
segmentation (Pai et al., 2019, 2020) of SAR images to the best of our
knowledge. In Pai et al. (2019, 2020), the performance of U-Net, FCN
was studied for semantic segmentation of river in SAR images, and an
mIOU of 0.95 (U-Net) and 0.91 (FCN) was obtained. However, the SAR
image was resized to 512 × 512, to meet the input image dimension
requirement of U-Net, and then segmented. This resizing would result
in loss of details, thus affecting the accuracy of river width measure-
ment. Instead, in the proposed approach, the semantic segmentation
is performed on the sub-image, and the resulting segmentation map is
restitched to obtain the segmentation of the full resolution image. The
use of the SAR sub-image for segmentation also helps in identifying the
river using topological structural analysis if multiple water bodies are
detected.

The speckle noise is an undesirable effect of SAR image and there
are several approaches for reducing the effect of speckle noise. In our
study, it was found that the use of Lee filter for reducing the effect
of speckle noise results in loss of image information. An mIoU of 0.90
was obtained with U-Net trained after removal of speckle noise with
Lee filter, as compared to mIoU of 0.97 using UNet trained on images
without filtering. Indeed, one of the challenges in despeckling SAR
images is to suppress speckle noise while preserving image information
such as edges. Therefore, the proposed approach does not contain a
pre-processing step for removal of speckle noise.

3.2. River width measurement

The river’s width was measured at 116 different locations in the SAR
images from the period of April 2019–December 2020. The estimated
river width was compared with the actual river width measured manu-
ally in Google Earth. Table 2 shows the measured width at few locations
7

Fig. 7. Post-processing segmentation results for river identification: The segmentation
obtained using U-Net might also contains low lying fields submerged with water (Left
column). This results is further refined by assuming that the region with largest number
of pixel represents the river. It can be observed that the rivers are indeed identified
using this assumption (right column).

Table 2
River width measured using U-Net Segmentation results 𝑊 𝑈𝑁𝑒𝑡

𝑚 and DeepLabV3+
segmentation results 𝑊 𝐷𝑒𝑒𝑝𝐿𝑎𝑏𝑉 3+

𝑚 .
Actual width (Kms) 𝑊 𝑈𝑁𝑒𝑡

𝑚 (Kms) 𝑊 𝐷𝑒𝑒𝑝𝐿𝑎𝑏𝑉 3+
𝑚 (Kms)

0.104 0.103 0.0749
0.117 0.1266 0.1286
0.17 0.1185 0.1499
0.192 0.159 0.118
0.059 0.0353 0.053
0.076 0.12366 0.05586
0.08 0.099 0.129
0.268 0.2529 0.2185

using the segmentation results obtained from U-Net and DeepLabV3+.
The average absolute error in measurement was 20.05 m using the
segmentation results of U-Net and 31.3 m using the segmentation
results of DeepLabV3+. Besides, the root mean square error (RMSE) of
24.9 m using U-Net segmentation map and 76.6 m using DeepLabV3+
segmentation map was obtained. The estimated river width using the
U-Net segmentation results is more accurate than that of DeepLabV3+,
mainly due to a more precise segmentation map obtained using U-Net
(Figs. 5, 6). This finding reinstates the importance of river identification
to measure its width accurately.

Note that the proposed approach for river width measurement
significantly outperforms the previously reported work. An average
absolute error and RMSE were reported to be 43.1 m and 99.2 m
respectively in Yang et al. (2020). In contrast, mean absolute error and
RMSE of 20.05 m and 24.9 m is obtained in the proposed approach
from the U-Net segmentation results.

4. Computer code availability

The source code used in this study is available at https://github.
com/ArjunChauhan0910/DeepRivWidth.

https://github.com/ArjunChauhan0910/DeepRivWidth
https://github.com/ArjunChauhan0910/DeepRivWidth
https://github.com/ArjunChauhan0910/DeepRivWidth
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Fig. A.8. Original SAR image (left) of Ganges, Near Patna (Eastern India) and the semantic segmentation output (UNet) using the UNet model trained on images from Mangalore–
Udupi Region (Southern India). It can be observed that the model trained on SAR images of one region can accurately identify the river of a completely different region due to
the specular property of SAR images.
5. Conclusion

Typically, the river width is measured manually in the field which
is a time-consuming and challenging task especially in rugged terrain.
Remote sensing based methods offer an alternative approach to mea-
sure width remotely. The current methods use electro-optical sensors
that are sensitive to obstructions, such as clouds. This work proposes
to use Synthetic Aperture Radar images, which can penetrate clouds,
for river width measurement. In addition, the SAR images allows an all-
weather monitoring of the region and can even acquire the images even
during the night. The existing methods of river identification in SAR
images requires manual estimation of morphological filter parameters
(Klemenjak et al., 2012), seed region (Ciecholewski, 2017) and thresh-
olding parameters (Sghaier et al., 2016). In the proposed approach, the
river identification is formulated as a binary semantic segmentation
task and performance of two state-of-the-art methods for semantic
segmentation is compared for river identification and subsequent width
measurement. The use of end-to-end CNN network for river identifica-
tion eliminates the need for manual estimation of morphological filter
parameters, seed region and thresholding parameters. It is observed
that the U-Net model could accurately identify rivers along with other
water bodies. In fact, the U-Net model is able to segment the irregular
shaped river banks (visible during Indian Monsoon) and small islands.
Moreover, the proposed approach exploits the specular reflective prop-
erty of the water in SAR image and formulates the river identification
as a binary semantic segmentation task. Although the study area in
this work is the rivers of Udupi–Mangalore region (Southern India), the
experimental results demonstrate that the model trained on identifying
rivers of Southern India can be used to identify rivers of Eastern India.
This cross-region generalization paves the way for creation of a global
river identification tool from SAR images. One of the limitations of the
proposed approach is that in some instances, U-Net and DeepLabV3+
failed to identify a very narrow river. The absolute error between
the estimated width and actual width is 20.05 m, demonstrating the
8

proposed approach’s robustness. The proposed method is validated by
measuring the width of the rivers of the Mangalore–Udupi region of
Coastal Karnataka (India), which is affected by frequent floods during
monsoon and water scarcity in summer. The measured river width from
SAR images would provide government authorities information for
better planning and management of water resources of this ecologically
sensitive region.

Indeed, the accuracy of river width measurement depends heavily
on the robustness of the river identification method. This work com-
pared the performance of two semantic segmentation algorithm for
river width measurement. This comparative study helped gain more
insights into these algorithms for the segmentation of rivers in SAR
images. Despite the encouraging segmentation results, there is a scope
for developing a more accurate river segmentation algorithm for SAR
images. The dataset used in this study would be made available for
further research in developing novel algorithms for river segmentation
of SAR images and new application development.
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Appendix. Cross-region generalization of river identification ap-
proach

The motivation behind this work was to measure the river width
of the ecologically sensitive Udupi–Mangalore region. However, the
trained semantic segmentation model was also utilized to identify the
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Ganges river, near Patna (Eastern India). Fig. A.8 shows the original
SAR image of Ganges and the semantic segmentation output of the
same region using the UNet model trained on SAR images of Udupi–
Mangalore region (Southern India). It can be observed that the model
trained on a particular region can accurately identify the river of a
completely different region. Quantitatively, an mIoU of 0.84 and F1-
score of 0.91 was measured for the two images shown in Fig. A.8. In
fact, the trained model is able to precisely identify the minute details
such as bridges (shown as red circle in Fig. A.8) across the river. This
cross-region generalization is primarily due to the specular reflection
property of water, and paves the way for a global river identification
tool from SAR images.
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