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Abstract—Semantic segmentation of aerial videos has been ex-
tensively used for decision making in monitoring environmental
changes, urban planning, and disaster management. The reliability
of these decision support systems is dependent on the accuracy of
the video semantic segmentation algorithms. The existing CNN-
based video semantic segmentation methods have enhanced the
image semantic segmentation methods by incorporating an addi-
tional module such as LSTM or optical flow for computing temporal
dynamics of the video which is a computational overhead. The
proposed research work modifies the CNN architecture by incor-
porating temporal information to improve the efficiency of video
semantic segmentation. In this work, an enhanced encoder–decoder
based CNN architecture (UVid-Net) is proposed for unmanned
aerial vehicle (UAV) video semantic segmentation. The encoder of
the proposed architecture embeds temporal information for tem-
porally consistent labeling. The decoder is enhanced by introducing
the feature-refiner module, which aids in accurate localization of
the class labels. The proposed UVid-Net architecture for UAV video
semantic segmentation is quantitatively evaluated on extended
ManipalUAVid dataset. The performance metric mean Intersection
over Union of 0.79 has been observed which is significantly greater
than the other state-of-the-art algorithms. Further, the proposed
work produced promising results even for the pretrained model of
UVid-Net on urban street scene by fine tuning the final layer on
UAV aerial videos.

Index Terms—Deep learning, semantic segmentation, transfer
learning, U-Net, unmanned aerial vehicle (UAV) video.

I. INTRODUCTION

THE analysis of data collected from airborne sensors such
as aerial images/videos is increasingly becoming a vi-

tal factor in many applications such as scene understanding,
studying the ecological variations [35], [36], [44], tracking of
vehicles/animals/humans [9], [25], [34], surveying the urban
development [46], [53], [60], etc. Besides, aerial image analysis
has been used for assessing the damage immediately after a natu-
ral disaster [17]. Typically, the aerial images are captured by dif-
ferent imaging modalities such as synthetic aperture radar [54]
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Fig. 1. Importance of temporal consistency in video scene labeling. First row
represents the temporal inconsistent labels produced by image segmentation
algorithm (U-Net) on videos. Second row depicts an example of temporally
consistent labeling obtained using the proposed approach (UVid-Net).

and hyper-spectral imaging [41] which are present on-board a
satellite. Recently, the unmanned aerial vehicles (UAVs) have
also been widely used for various applications such as disaster
management, urban planning, tracking of wildlife, agricultural
planning, etc. [3], [4]. Due to rapid deployment and a customized
flight path, the UAV images/videos could provide additional
finer details and complement satellite-based image analysis ap-
proaches for critical applications such as disaster response [31].
Besides, the UAV images could be utilized along with satellite
images for better urban planning or geographical information
updating. Typically, the UAV image/video analysis is limited
for object detection [12], [24] and recognition [50] tasks such
as building detection, road segmentation, etc. However, to the
best of our knowledge, there are limited works on semantic
segmentation of UAV images or videos [14], [52].

Segmentation is a crucial task for scene understanding and
has been used for various applications [10], [42], [47]. Semantic
segmentation is a process of assigning predetermined class
labels to all the pixels in an image. Semantic segmentation of
an image is a widely studied topic in computer vision. However,
the extension of semantic segmentation for video applications is
a nontrivial task. One of the challenges in video semantic seg-
mentation is to find a way to incorporate temporal information.
Fig. 1 illustrates the importance of temporal information in the
context of video acquired by UAV. The poor segmentation in the
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greenery class can be observed in the (i+ 1)th keyframe which
can be improved by embedding temporal information from the
past frames.

In a typical video semantic segmentation approach, a se-
quential model is added on top of the framewise semantic
segmentation module, thus creating an overhead [13]. Besides,
features/label propagation [33], which reutilizes features/labels
from previous frames has also been utilized to capture the
temporal information. However, these methods depend on the
establishment of pixel correspondence between two frames.
Recently, video prediction based approach [61] has been used to
generate new training images and has achieved state-of-the-art
performance for video semantic segmentation. However, this
approach uses an additional video prediction model to learn the
motion information.

This work focuses on semantic segmentation of videos ac-
quired using UAV. The proposed method demonstrates that a
simple modification in the encoder branch of CNN is able to
capture the temporal information from the video, thus elimi-
nating the need for an extra sequential model for computing
correspondence for feature/label propagation.

A new encoder–decoder based CNN architecture (UVid-Net)
proposed in this work has two parallel branches of CNN layers
for feature extraction. This new encoding path captures the tem-
poral dynamics of the video by extracting features from multiple
frames. These features are further processed by the decoder for
the estimation of class labels. The proposed algorithm utilizes
a new decoding path that retains the features of encoder layers
for decoders. The contribution of the article can be summarized
as follows.

1) The dependence of existing methods on optical
flow/ConvLSTM for the establishment of temporal
correspondence is an overhead for video semantic
segmentation. Hence, a new encoding path is presented
consisting of two parallel branches for extracting temporal
and spatial features for video semantic segmentation.
This new encoding path eliminates the need for an extra
sequential module (ConvLSTM) or computation of optical
flow for establishing temporal correspondence.

2) A modified upsampling path is proposed which uses a
feature-refiner module to capture fine-grain features for ac-
curate classification of class boundary pixels. The feature-
refiner module also reduces the number of parameters
(11.68% reduction) and the computational complexity
(11% reduction) of the model as compared to the traditional
decoder module.

3) An extended version of UAV video semantic segmenta-
tion dataset is presented. This dataset is an extension of
ManipalUAVid dataset [15] and contains additional videos
captured at new locations. Fine pixel-level annotations are
provided for four background classes namely greenery,
roads, constructions, and water bodies as per the policy
adopted in [15]. The dataset is available for download at
https://github.com/uverma/ManipalUAVid

4) This work also studies the performance of the proposed
UVid-Net trained on a larger urban street scene dataset

for semantic segmentation for segmentation of UAV aerial
videos. The capability of UVid-Net to utilize transferable
features allows the model to be retrained with a few labeled
data.

This article is organized as follows. Section II summarizes the
recent developments in video semantic segmentation. Section III
describes the architecture of the proposed network UVid-Net and
Section IV presents the various results obtained.

II. RELATED WORKS

Video semantic segmentation is generally addressed by uti-
lizing traditional energy-based algorithms such as conditional
random field (CRF) or deep learning based algorithms such as
CNN, RNN, LSTM, etc. One of the challenges in video semantic
segmentation is to embed temporal information. Learning the
dynamics of the video aids in improving the performance of
video semantic segmentation by ensuring temporal consistency.
Despite this interest, previous works such as [6], [14], and [15]
extended the traditional image semantic segmentation approach
for video semantic segmentation. These approaches segment all
the frames independently of each other which fails to capture
the dynamics of the video. Recent advances in video semantic
segmentation by utilizing spatio-temporal information can be
categorized into roughly two groups: deep learning based meth-
ods and CRF-based methods.

There exist several CNN-based semantic segmentation ap-
proaches in literature such as [20], [38], [45], [57], [61], etc.
The authors of [57] proposed bilateral segmentation network
(BiSeNet) to capture spatial and contextual information for
semantic segmentation. In a separate study [29], the authors used
part-object relationship for a robust salient object segmentation.
In [28], authors used multiple ASPP module to increase the
density of sampling distribution. However, these approaches an-
alyze single image, while the proposed work aims to incorporate
temporal information for video semantic segmentation.

Popular CNN-based algorithms like [30] and [42] used
encoder- and decoder-based architecture for learning the var-
ious patterns of the data and localizing the class labels. These
algorithms are dependent on a large densely annotated dataset.
However, obtaining a finely annotated large dataset is expensive,
time-consuming, and challenging. To address the issue of limited
training data, GANs were utilized [45]. Few authors [1], [22]
used GAN to learn the dynamics of the video and perform video
scene parsing. GAN can be trained to parse future frames as well
as label images as proposed by [22].

Besides, temporal dynamics are also learnt using a sequential
model like LSTM [52]. Moreover, LSTM is also used to select
keyframes for video scene parsing [32]. Wang et al. [48], pro-
posed noisy-LSTM which uses ConvLSTM for video semantic
segmentation. The strategy used is to train network with noisy
images to disrupt the temporal information. Recently, memory
modules are also explored for learning the temporal dynamics
of the video [37]. Few authors explored the attention mechanism
with CNN to perform video semantic segmentation [27], [49].

https://github.com/uverma/ManipalUAVid
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Wang et al. [49] proposed TMANet which uses attention mech-
anism to capture long-range temporal information required for
video semantic segmentation. In another study [55], authors used
pixel-level matching between two consecutive frames to obtain
global and local similarity maps for video object segmentation.
However, it is challenging to determine the attention coefficients.
Optical flow is another popular choice for the establishment of
temporal correspondence between two consecutive frames [21].
Few studies such as [38] and[61] proposed to predict labels and
images jointly to efficiently train deep learning models with
less training data. However, the dependence of deep learning
algorithms on large annotated datasets limits the development
of deep learning algorithms for other contexts such as UAV, etc.

Many researchers have explored CRF for incorporating
spatio-temporal information in video semantic segmentation.
CRF is a graphical model that captures a large spatial relation-
ship between pixels. Hence, it is widely used in literature for
context-aware scene parsing [8], [43]. CRF can be extended to
incorporate temporal information as shown in few literatures
such as [2], [5], [8], [23], [26], and [59], but it depends on
the reliable estimation of temporal links. The authors of [26]
utilized 3-D CRF along with optimized feature space for video
semantic segmentation. However, 3-D CRF is impractical for
videos since it is computationally expensive. Potential energies
based on temporal information were also explored for producing
temporally consistent labels [5]. Few researchers incorporated
CNN within CRF frame work to obtain initial estimation of
class labels [2], [59]. Authors of [23] used conditional restricted
Boltzmann machine along with CRF to learn the temporal and
shape features required for video semantic segmentation. In
general, optical flow is widely used to establish the temporal
link and propagate features and labels. However, estimation of
accurate optical flow is an overhead for real-time video semantic
segmentation. In the recent work of [16], a new potential term
was proposed to enhance the temporal smoothness of video se-
mantic segmentation without the usage of optical flow. In another
study, higher order potential energies were explored for video
semantic segmentation [8]. Class labels in CRF are inferred by
using an inference algorithm which is computationally intensive
and impractical for video processing.

The existing state-of-the-art method for video semantic seg-
mentation predicts frames and its labels from the historic
data [61]. However, this approach is dependent on a reliable
estimation of temporal correspondence between two consecutive
frames. Temporal links are generally established by utilizing
dense optical flow-based methods [26]. Optical flow estimation
is an overhead, and the accuracy of semantic segmentation
depends on the accuracy of optical flow estimation. Besides,
the error in optical flow estimation can lead to misaligned
predicted labels in the future frames, thus affecting the accuracy
of the segmentation. The proposed work eliminates the need for
computing optical flow, thus reducing the overhead.

In this work, a two-branch encoder is proposed for incor-
porating temporal smoothness in video semantic segmentation.
Multibranch CNNs are popularly used in video processing
due to their ability to capture the relationship between the
sequence of frames. Several authors used multibranch CNNs to

perform video classification [51], action recognition [39], and
video captioning [58]. Few authors utilized multibranch CNN
architecture to provide attention mechanism. Authors of [40]
explored multibranch CNN to extract features from different
frames. In [19], the authors proposed to utilize multiple shallow
networks to extract features from consecutive frames to perform
video semantic segmentation. To the best of our knowledge,
lightweight multibranch CNNs are not explored to perform
video semantic segmentation of UAV videos.

III. METHODOLOGY

This section describes the encoder (Section III-A) and decoder
module (Section III-B) of the proposed approach. Figs. 2 and
3 show the proposed architecture with U-Net and ResNet-50
feature extractor, respectively. In a typical video, the changes
between two consecutive frames are very minimum, and, hence,
processing every frame is redundant and time-consuming for
video semantic segmentation. However, selecting keyframes
at constant interval may result in loss of useful information
required for temporal consistency. This would be detrimental
for video semantic segmentation methods which depend on
temporal features. Hence, in the present study, the keyframes are
identified using the shot boundary detection approach presented
in [15] (on an average, a shot consists of 15–20 frames). The
use of shot boundary detection method for dynamically identi-
fying the keyframes ensures that the frames containing useful
information are not ignored.

Let us represent the ith frame from the lth shot in a video as
f l
i . The inputs to the two branches of UVid-Net (Figs. 2 and 3)

are the two frames from two consecutive shots: f (l−1)
(n/2+1) (upper

branch) and f l
n/2 (lower branch), where n represents the total

number of frames in a shot. These two frames correspond to the
next frame after the middle frame of the previous shot f (l−1)

(n/2+1)
and the middle frame from the current shot. These two input
frames produce the semantic segmentation for the middle frame
of the current shot f l

n/2. For the first shot, since there is no prior

shot, the first frame (f1
1 ) of the video and middle frame (f1

n/2)
of the first shot is considered as input to the network. In the rest
of this document, the middle frame of a shot is considered as the
keyframe, as per the policy followed for UAV video semantic
segmentation [15].

A. Encoder

In this work, the performance of two different architectures
(U-Net and ResNet-50 encoders) is studied for feature ex-
traction. U-Net encoder consists of a convolutional layer and
maxpool layers for feature extraction. The ResNet-50 feature
extractor consists of residual blocks that help in alleviating the
vanishing gradient. These two feature extractors are different,
and comparing their performance on multibranch CNN helps
us in providing insight into the robustness of the model. In
the following text, UVid-Net (U-Net encoder) and UVid-Net
(ResNet-50 encoder) refer to the proposed architecture with
U-Net encoder and ResNet-50 encoder module, respectively.
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Fig. 2. UVid-Net: Overview of the proposed architecture for UAV video semantic segmentation (U-Net encoder). The architecture consists of encoding path to
extract spatio-temporal features and an upsampling path which produces smoother segmentation boundaries.

Fig. 3. UVid-Net (ResNet-50 encoder): overview of the proposed architecture
for UAV video semantic segmentation with ResNet-50 encoder.

It may be noted that the decoder module is identical for both the
architectures.

1) U-Net Encoder: The upper branch of the encoder (Fig. 2)
contains four blocks. Each block consists of two consecutive
3× 3 convolution layers with batch normalization and ReLU
activation function as in the encoder of U-Net [57]. Finally, the
activation is then passed through a1× 1 convolution layer which
is additionally introduced to reduce the dimensions of the feature
maps. Finally, a maxpooling layer with stride (2,2) is applied to
extract the most prominent features for the subsequent layers.
As in the traditional U-Net, the number of feature maps doubles
after each maxpooling operation, starting with 64 feature maps
for the first block.

The lower branch of the encoder also consists of four blocks.
Each block in the lower branch has a 3× 3 convolution layer
with batch normalization and ReLU activation function and the
second set of 3× 3 convolution layer with batch normalization
and ReLU activation function. This is followed by a maxpool-
ing layer that extracts most prominent features. Similar to the
upper branch, the number of feature maps doubles after each
maxpooling operation.

The features extracted by the upper and lower branches of
the encoder are fed to two separate bottleneck layers consisting
of 3× 3 convolution with 1024 features maps. Finally, the
activation of both these branches is concatenated and fed to the
decoder.

2) ResNet-50 Encoder: Besides the U-Net based encoder de-
scribed above, the ResNet-50 architecture (Fig. 3) could also be
used as a branch in the encoder. ResNet-50 is a CNN architecture
proposed for image classification. This architecture proposed
the idea of skipping a few layers to learn identity mapping.
ResNet-50 has also been widely used as a feature extractor for
transfer learning applications [18].

In the present study, the upper branch and lower branch consist
of identical ResNet50 architecture to extract features (Fig. 3).
This architecture consists of an initial convolution operation with
kernel size (7 × 7) followed by batch normalization layer and
ReLU activation function. Subsequently, a maxpool operation
with kernel size (3 × 3) is applied. Followed by the maxpool
operation, the architecture consists of four stages. The first stage
consists of three residual blocks, each containing three layers.
Each of these residual blocks consists of 64, 64, and 128 filters.
The second stage consists of four residual blocks with three
layers each. These three layers use 128, 128, and 256 filters.
The third stage consists of six residual blocks with three layers
each. These layers use 256, 256, and 512 filters. The fourth
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stage consists of three residual blocks with three layers each.
These layers use 512, 512, and 1024 filters. The first residual
blocks of stage 2, 3, and 4 utilize stride operation to reduce the
input dimension by 2 in terms of width and height. First and
last layers in every residual block consist of (1 × 1) kernel size
and the second layer consists of (3 × 3) kernel size. All residual
block consists of identity connection which solves the vanishing
gradient problem.

The activations of upper and lower ResNet50 branches are
concatenated and are further used by the decoder to perform
semantic segmentation.

B. Decoder

In an encoder–decoder based architecture, the consecutive
maxpooling operations in encoder reduces feature map’s size
and results in the loss of spatial resolution. Hence, to compensate
for this loss of information, skip connections are popularly used
from encoding layers to decoding layers [30], [42]. Networks
like U-Net use concatenation operation where the feature maps
from the last layer of each block in the encoder are stacked with
the feature maps of corresponding decoding layers. Here, we ar-
gue that elementwise multiplication of the feature maps from the
last layer of each block in encoder with the corresponding decod-
ing layers results in better representation of feature maps. This
module which performs elementwise multiplication of feature
maps is called as feature-refiner since it refines the features of the
corresponding encoding path. In addition to the improvement in
segmentation, the proposed feature-refiner module reduces the
number of learnable parameters as compared to the concatena-
tion operation. For instance, the total number of parameters for
UVid-Net (U-Net encoder) with multiplication is 23 745 032,
whereas the total number of parameters for UVid-Net (U-Net
encoder) with concatenation is 26 878 472. The experimental
results (Section IV-C) show that the elementwise multiplication
of the encoder feature map with the corresponding decoder
feature map produces a more smoother segmentation map.

As discussed earlier, the decoder module is identical for both
UVid-Net (U-Net encoder) and UVid-Net (ResNet-50 encoder)
(Figs. 2 and 3). The decoder path of the proposed architecture
contains four blocks. Each of these blocks consists of an up-
sampling layer with stride 2. This is followed by a convolution
layer with filter size (2,2). The output of this is passed through
a feature-refiner module which multiplies the corresponding
feature maps of the encoder (lower branch) and the decoder. Note
that the last layer of each stage/block of the lower branch encoder
is merged with corresponding decoder layers. This is followed
by convolution layers and the ReLU activation layer. At the last
layer, the SoftMax layer is applied to obtain the probability of
pixels belonging to each class.

IV. RESULTS AND DISCUSSION

In the present study, an extended version of ManipalU-
AVid [15] dataset is used to evaluate the performance of the
UVid-Net for UAV video semantic segmentation. The proposed
architecture is trained by utilizing categorical cross-entropy loss
with Adam optimizer for learning the parameters of the model. In

this section, it is shown experimentally that the proposed encoder
module is able to incorporate temporal smoothness for video
semantic segmentation (Section IV-B). Further, the effectiveness
of the feature-refiner in the decoder module is demonstrated in
Section IV-C. Finally, the performance of the proposed archi-
tecture is compared with the state-of-the-art methods for video
semantic segmentation (Section IV-D).

A. Dataset: ManipalUAVid

This article presents an extended version of ManipalU-
AVid [15] dataset for semantic segmentation of UAV videos.
This extended dataset consists of new videos captured at addi-
tional locations. The extended dataset consists of 37 videos with
annotations provided for 711 keyframes. The pixel-level anno-
tations are provided for four background classes viz., greenery,
construction, road, and water bodies. The videos are captured at
29 frames per second and at a resolution of 1280× 720 pixels.
The keyframes are identified by following the shot boundary
detection approach mentioned in [15], and, on an average, a
shot consists of 15–20 frames. More details of this dataset can
be found in [15]. The ManipalUAVid presented in [15] contains
33 videos and annotations were provided for 667 keyframes.
Besides, the performance of semantic segmentation algorithms
that analyze each keyframe individually was provided in [15] on
the ManipalUAVid dataset. The earlier version of ManipalUAVid
dataset [15] consists of last two keyframes of each video in the
test split which might not be sufficient to observe the temporal
smoothness or the error (if any) accumulated over the period
of time in the video. Therefore, in this work, ManipalUAVid is
extended by incorporating four new videos (total key frames:
44) which are entirely in the test split. Besides, the training-test
split distribution is slightly modified so that a greater number
of frames (4–5 frames) per video is included in the test split of
this updated dataset. This aids in evaluating the video semantic
segmentation models for temporal consistency.

Following the same protocol [15], the performance of UVid-
Net is evaluated by comparing the keyframes segmented using
UVid-Net with the ground truth. In ManipalUAVid, middle
frames of a shot (f l

(n/2)) are considered as the keyframes. As

discussed earlier, two frames (f (l−1)
(n/2+1) and f l

(n/2)) are provided

as the input to UVid-Net for semantic segmentation of f l
(n/2)

(l �= 1). The dataset is divided into train, validation and test split
which consists of 569, 71, and 71 keyframes, respectively. The
following metrics are computed to evaluate the performance of
the proposed method: mean Intersection over Union (mIoU),
precision, recall, and F1-score. It may be noted that the values
of the evaluation metrics obtained in this study are different from
that reported in [15] due to additional videos being added in the
dataset.

B. Evaluation of Encoder

The proposed encoder part consists of two branches that
extract features from two consecutive keyframes of a video
simultaneously. Two variants of UVid-Net (U-Net encoder and
ResNet-50 encoder) encoders are considered in this work. To
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Fig. 4. Comparing the performance of the proposed two-branch encoder module with single-branch encoder. (a) Four consecutive keyframes and (b) its
corresponding ground-truth images. (c) Results of single-branch encoder viz., U-Net. (d) and (e) Results of two-branch encoder architectures viz., UVid-Net
(with U-Net encoder) and UVid-Net (ResNet50 encoder), respectively. Yellow circles highlight the temporal inconsistency produced by single-branch U-Net in
semantic segmentation. Here, green, gray, red, and blue colors represent the greenery, road, construction, and water bodies class, respectively.

TABLE I
PERFORMANCE METRICS OF THE VARIOUS ALGORITHMS ON MANIPALUAVID DATASET

evaluate the performance of the proposed architecture, we com-
pare it with the traditional U-Net architecture (with a single-
encoder branch). Fig. 4 shows the comparison of the seg-
mentation results obtained using a single-branch U-Net and
two-branch UVid-Net. Since single-branch U-Net is an image
semantic segmentation algorithm, it fails to capture the temporal
information and, hence, produces temporally inconsistent labels.
In contrast, the proposed architecture is able to capture the
temporal dynamics between the two keyframes and produces
more accurate results. For instance, the U-Net with single-
branch encoder incorrectly classifies few pixels belonging to
road/greenery class as construction (shown in yellow circles).
However, the two-branch encoder-based proposed method cor-
rectly classifies these pixels as road/greenery, thus producing a

temporally smoother segmentation result as shown in Fig. 4(d)
and (e).

Tables I and II compare the performance of single-branch
encoder U-Net with the proposed UVid-Net in terms of mIoU,
precision, recall, and F1-score. It is observed that the per-class
IoU of UVid-Net (U-Net encoder) for all the four classes are
higher than the single-branch U-Net. Moreover, from Table I,
it is observed that the proposed method has higher recall and
precision scores than single-branch U-Net, which indicates
that it has produced lower false positives and false negatives.
The above results demonstrate the effectiveness of two-branch
encoder module in acquiring temporal information and, thus,
resulting in a more accurate segmentation as compared to the
classical single-branch encoder U-Net. It may be noted that a
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TABLE II
PER-CLASS IOU AND MIOU OF VARIOUS ALGORITHMS ON MANIPALUAVID DATASET

The bold values represents the best performing algorithms.

single-branch U-Net with ResNet-50 encoder suffered from high
variance (overfitting) even in the presence of regularization, with
training and validation accuracies of 0.98 and 0.66, respectively.

Tables I and II also compare the performance of encoder
architectures based on U-Net encoder and ResNet-50. It can
be observed that the proposed encoder module based on U-Net
encoder and ResNet-50 achieves a comparable performance (in
terms of IoU, Table II) on greenery and road class while a slightly
lower IoU is observed in construction and water bodies class
for ResNet-50 based encoder. This decrease in IoU for water
bodies and construction class for ResNet-50 based encoder is
on expected lines due to the challenges encountered in learning
the parameters of a deeper network (ResNet-50) with limited
training images. The decrease in IoU for two classes results in a
slightly lower mIoU for UVid-Net based on ResNet-50 encoder
as compared to that of U-Net encoder. However, in spite of the
decrease in IoU for two classes, the overall mIoU obtained using
UVid-Net with ResNet-50 based encoder (0.72) is comparable
with that of the current state-of-the-art method [61].

In addition to the qualitative and quantitative evaluation of
the encoder, the softmax output of U-Net and UVid-Net (U-Net
encoder) is also analyzed in Fig. 5. It can be observed that a
high probability score is obtained for the pixels in their actual
class in UVid-Net as compared to that of U-Net. The high
probability score eliminates uncertainty and produces a more
accurate segmentation. For example, a high probability score
for greenery class is obtained for pixel belonging to trees using
UVid-Net (Fig. 5). In addition, U-Net which lacks temporal
information has produced higher construction class probability
for pixel belonging to greenery at the boundaries (refer the
6 × 6 representative regions in Fig. 5). In contrast, the UVid-Net
which utilizes features propagated from the previous frame has
produced very low construction class probability for greenery
pixels at the class boundaries.

C. Evaluation of Decoder

The decoder of the proposed UVid-Net architecture consists
of skip connections from the lower branch of the encoder to
the corresponding decoder layers. Elementwise multiplication
operation is utilized to combine the activations of the encoder
and decoder layers. The experimental evaluation of the proposed
feature-refiner module with the concatenation approach suggests

Fig. 5. Heat map of probability distributions produced by U-Net and UVid-Net
algorithms. Row 1 shows the softmax output of U-Net, while row 2 shows the
softmax output of UVid-Net. Also shown are the actual softmax output for a
6 × 6 region.

a marginal increase in mIoU for UVid-Net with U-Net encoder
(Tables III and IV). It can be observed that the per-class IoU is
higher for road and water bodies for the multiplication operation
as compared to concatenation. Further, the other two classes
(greenery and construction) perform competitively in terms of
per-class IoU. However, the qualitative evaluation shows that
a more accurate segmentation is obtained using the proposed
approach compared with the concatenation. Fig. 6 shows few
images where finer segmentation boundaries are obtained using
the UVid-Net (multiplication) with U-Net encoder as compared
to UVid-Net (concatenation). It may be observed in Fig. 6 (first
two rows) that the pixels from the road class have been misclassi-
fied as construction class using UVid-Net (concatenation), while
a precise greenery–road boundary is obtained using UVid-Net
(multiplication). The improvement obtained using the proposed
feature-refiner module is more prominent for UVid-Net (ResNet
encoder). An mIoU of 0.72 is obtained with UVid-Net (ResNet
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TABLE III
COMPARING PERFORMANCE OF UVID-NET (CONCATENATION) WITH UVID-NET (MULTIPLICATION)

The bold values represents the best performing algorithms.

TABLE IV
PER-CLASS IOU AND MIOU OF UVID-NET FOR COMPARING PERFORMANCE OF

UVID-NET (CONCATENATION) WITH UVID-NET (MULTIPLICATION)

The bold values represents the best performing algorithms.

Fig. 6. Evaluating decoder: segmentation results obtained using UVid-Net
(U-Net encoder, concatenation) and UVid-Net (U-Net encoder, multiplication).
(a) Original image. (b) Results of concatenation of feature maps [UVid-Net
(concatenation)]. (c) Results of elementwise multiplication [UVid-Net (multi-
plication)]. Note the improvement in the segmentation by utilizing elementwise
multiplication (yellow circles). Here, green, gray, red, and blue colors represent
the greenery, road, construction, and water bodies class, respectively.

encoder) with multiplication operation as compared to 0.53 with
concatenation.

Moreover, the feature-refiner module reduces the number of
FLOPs along with a number of parameters. It is observed that
UVid-Net (multiplication) results in 142 291 716 FLOPs while
UVid-Net (concatenation) results in 161 093 892 FLOPs for
U-Net encoder (∼11% less FLOPs). These results show that
an accurate segmentation is obtained using UVid-Net (multi-
plication) with much less computation overhead. Besides, the
elementwise multiplication operation in UVid-Net also reduces
the number of learnable parameters (23 745 032) in the network
as compared to the concatenation in the UVid-Net (26 862 856).
This result is significant since the proposed architecture pro-
duces higher mIoU (in the order of 0.79) with a reduced number
of parameters. Indeed, the reduced complexity and the number
of parameters of UVid-Net as compared to traditional concate-
nation operation makes it an ideal CNN architecture which can
be used for UAV-based IoT applications.

D. Comparison With State of the Art

The proposed approach is compared with the existing state-of-
the-art image semantic segmentation methods viz., U-Net [42],
FCN8 [30], and DeepLabV3+ [7]. However, these methods
do not incorporate temporal information and segment each
keyframe independently. Therefore, the proposed method is also
compared with the state-of-the-art approaches ([19] and [61]) on
CityScape dataset that includes temporal information. The au-
thors in [19] used multiple shallow CNNs to extract features from
multiple frames. Subsequently, attention mechanism is utilized
to combine the temporal features. In [61], the authors proposed to
use video prediction model to propagate labels to the immediate
neighboring frames for creating more image-label pairs [61].
Besides, the performance of UVid-Net is compared with the
UAV video semantic segmentation approach proposed in [52].
This approach uses a convolution long short-term memory (Con-
vLSTM) module to capture the temporal dynamics of the video.
It may be noted that the method proposed in [52] independently
segments each frames using FCN8, and then the resulting frames
are passed through ConvLSTM module as the postprocessing
step. However, in addition to combining FCN8 + ConvLSTM,
we also compare the performance by segmenting individual
frames with U-Net/DeepLabV3+ and then postprocessing it with
ConvLSTM module, resulting in two additional methods viz.,
UNet + ConvLSTM and DeepLabV3+ + ConvLSTM.

The proposed architecture is quantitatively compared with
the above-mentioned existing approaches. Table I compares the
performance metrics such as precision, recall, F1-score, and
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Fig. 7. Visual results comparison of UVid-Net and [61] on construction class.
(a) Raw image. (b) Ground truth. (c) Results of [61]. (d) Results of UVid-Net.

Fig. 8. Comparing performance of U-Net + ConvLSTM with UVid-Net (U-
Net encoder). (a) and (b) Two consecutive key frames and its corresponding
ground-truth. (c) and (d) Results of U-Net with ConvLSTM and UVid-Net. Here,
green, gray, red, and blue colors represent the greenery, road, construction, and
water bodies class, respectively.

mIoU, while Table II compares the per-class IoU and mIoU of
the existing methods with the proposed method. As discussed
earlier, the image semantic segmentation approaches (U-Net,
FCN, and DeepLabV3+) segment each keyframe independently
and fail to capture temporal cues. It can be observed that an
mIoU of 0.79 is obtained by the proposed approach as com-
pared to an mIoU of 0.75, 0.64, and 0.65 for U-Net, FCN8,
and DeepLabV3+, respectively. The proposed approach out-
performs the existing image segmentation approach. Besides,
it can be observed from Fig. 9 that UVid-Net produces a
more accurate segmentation map with smoother segmentation
boundaries as compared with other approaches. The proposed
UVid-Net incorporates temporal information by merging the
features extracted from two different frames of a video and
thereby outperforms the existing image semantic segmentation
algorithms.

In addition to the image segmentation algorithms, the pro-
posed approach is also compared with the video semantic seg-
mentation algorithms viz., TDNet [19], video propagation/label
relaxation [61], UNet-ConvLSTM, FCN8-ConvLSTM [52], and
DeepLabV3+ - ConvLSTM. It can be seen (Table I) that the
UVid-Net (U-Net encoder) achieves an mIoU of 0.79 and
F1-score of 0.91 outperforming the other video segmentation
approaches. Besides, UVid-Net (ResNet50-encoder) performs
competitively and achieves an F1-score of 0.89 and an mIoU of
0.72. To study the performance of the proposed method for each
class, the per-class IoU is computed as shown in Table II.

The water bodies class accounts for only 1.2% of the total
pixels in the dataset. In spite of the limited annotation avail-
able, the proposed approach UVid-Net outperforms the existing
methods and the current state of the art [61] by a significant
margin (IoU of 0.86 for UVid-Net vs. 0.61 for [61]). Moreover,
the construction class accounts for a slightly higher pixel count
(5.5%) in the dataset. For the construction class, the proposed
method outperforms the existing algorithms (except [61]) in
terms of IoU. A slightly higher IoU is observed using [61]
(0.67) as compared to UVid-Net (0.60) for the construction
class. Fig. 7 compares the performance of [61] and UVid-Net for
segmentation of construction class. More accurate segmentation
is obtained for few frames using the current state-of-the-art [61]
method for construction class as compared to the proposed
method (Fig. 7, row 3). However, for other frames, a more accu-
rate segmentation is obtained for the construction class using the
proposed method (Fig. 7, rows 1 and 2). The proposed approach
performs competitively (for construction class) with the current
state-of-the-art [61] method with a significant reduction in the
model parameters and without the need for an extra sequential
model/optical flow. It may also be noted that [61] contains 137 M
parameters, [19] contains 28 M parameters, while the proposed
approach contains 23 M parameters. Besides, there is a reduc-
tion in the computational complexity (91 055 000 000 FLOPs
for [61], 6 380 000 000 FLOPs for [19], while only 142 291 710
FLOPs for UVid-Net). Hence, the proposed method for video
semantic segmentation is efficient in terms of computational
complexity and is a viable solution for edge computing based
applications such as scene parsing using UAV. Fig. 9 compares
the segmentation results obtained using the proposed approach
and the existing methods. It can be observed that the more
accurate segmentation is obtained using the proposed method
as compared to the existing methods. For instance, the proposed
method is able to accurately identify construction, greenery, and
water bodies especially in fifth and eight rows of Fig. 9.

The UNet-ConvLSTM performs competitively on Mani-
palUAVid dataset with an mIoU of 0.76. However, U-Net-
ConvLSTM fails to capture the temporal dynamics as shown
in Fig. 8. In comparison, UVid-Net (U-Net encoder) produces a
more accurate segmentation, especially for the water body class.

In addition to the significant improvement in the performance,
the UVid-Net (U-Net encoder) has a lower number of parameters
as compared to the FCN-8, FCN-8 + ConvLSTM as shown in
Table I. Further, UVid-Net (U-Net encoder) has a comparable
number of parameters with other models with an exception of
DeepLabV3+ which uses MobileNet-V2 backbone. The lower
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Fig. 9. UAV video semantic segmentation results on ManipalUAVid dataset [15]. (a) and (b) Keyframes from UAV video and its corresponding ground truth. (c)
and (d) Results of ConvLSTM with U-Net and FCN8 backbone architectures, respectively. (e) Results of [61]. (f) Results of UVid-Net with ResNet50 encoder. (g)
Results of UVid-Net with U-Net encoder. (h) Results of transfer learning.

parameters of UVid-Net reduces the dependency on the avail-
ability of huge training data.

E. Evaluation of Transfer Learning

The availability of manually annotated training dataset of
sufficient size is a challenge in supervised deep learning based

approach. A widely used approach in this scenario is to train the
CNN network on a huge dataset and then transfer the weights
learned for the task at hand [56].

In this work, the transfer learning approach has been studied
on UVid-Net (U-Net encoder) for semantic segmentation of
UAV aerial videos. The UAVid-Net (U-Net encoder) is initially
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trained on Cityscape [11] dataset to predict eight categorical
classes (flat, human, vehicle, construction, object, nature, sky,
and void) by using Adam optimizer with a learning rate set to
0.0001. This dataset is selected due to its similarity in classes as
compared to ManipalUAVid. Moreover, this dataset consists of
3000 training images which are greater than the ManipalUAVid
dataset and helps in learning more generalized features. Sub-
sequently, the last layer of the model is retrained (with other
layers frozen) on the ManipalUAVid dataset to predict four
classes (greenery, road, construction, and water bodies). The
performance metrics of UVid-Net (U-Net encoder) by utilizing
transfer learning is shown in Tables I and II. It is observed that the
UVid-Net has performed competitively on greenery, road, and
construction classes with a per-class IoU of 0.89, 0.80, and 0.54,
respectively. However, a low per-class IoU is observed on water
bodies class (0.20). This result was expected since the Cityscape
dataset does not contain any images with water and has no defini-
tion for water bodies class. Fig. 9 shows the segmentation result
of transfer learning on UVid-Net (U-Net encoder). It can be
observed that the transfer learning approach offers competitive
results as compared to existing approaches on greenery, road,
and construction classes. Despite the limitation on unknown
classes, pretrained UVid-Net (U-Net encoder) could be the
preferred choice especially in the case of limited availability
of training dataset for UAV aerial videos segmentation.

V. CONCLUSION

This article presents a new encoder–decoder based CNN
architecture for semantic segmentation of UAV aerial videos.
The proposed architecture utilizes a new encoder consisting of
two parallel encoding branches with two consecutive keyframes
of the video as the input to the network. By integrating the
features extracted from the two encoding branches, the network
can learn temporal information eliminating the need for an extra
sequential module. Besides, it uses a feature-refiner module in
the decoder path. This module produces smoother segmentation
boundaries. The proposed architecture achieved an mIoU of
0.79 on ManipalUAVid dataset which outperforms the other
state-of-the-art algorithms. This work also demonstrated that
the proposed network UVid-Net trained on a larger semantic
segmentation dataset for urban street scenes (Cityscape) can
be utilized for UAV aerial videos segmentation. This transfer
learning approach shows that competitive results are obtained
on ManipalUAVid dataset by retraining only the last layer of
UVid-Net trained on Cityscape dataset. These results hold sig-
nificance as it reduces the dependency on the availability of
manually annotated training dataset which is a time-consuming
and laborious task. The improved efficiency of UVid-Net by
incorporating temporal information, along with reduced depen-
dency on the availability of training data, will provide better
segmentation of aerial videos. The lightweight architecture of
UVid-Net aids in reducing the computational complexity and
number of trainable parameters, which makes it an ideal CNN
architecture for UAV-based IoT applications. This improved
segmentation can be utilized for monitoring of environmen-
tal changes, urban planning, disaster management, and other

aerial surveillance tasks. In future, the developed system will be
studied for real-time performance and be deployed in UAV
drones for real-time scene analysis.

In general, commercially available UAVs are not flown with
very high speed for applications such as scene analysis, surveil-
lance, etc. The proposed model assumes a slow camera motion.
In the presence of very large camera motion, there exist large
scene variations between two consecutive frames. In these situ-
ations, estimation of temporal correspondence becomes manda-
tory for propagation of temporal information from frame to
frame. However, the proposed work utilizing shot boundary de-
tection and multibranch encoder has shown to be robust to small
camera motion. Moreover, the proposed approach is a more
suitable method for UAV-based IoT applications because of the
reduction in the number of trainable parameters, computational
complexity, and transferable features.
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